Name \qquad Period \qquad Date \qquad

Volume and Surface Area of Rectangular Prisms and Cylinders

Remember, the volume of a shape is how many cubic units you can fit inside it. What are the areas of the cubes drawn below? Make sure you write the units.

Volume of a Rectangular Prism $=$ \qquad
Surface Area of a Rectangular Prism =

1) Volume $=$ Surface Area = \qquad

2) Volume =

Surface Area = \qquad

2) Volume $=$ \qquad
Surface Area = \qquad

4) Volume $=$ \qquad
Surface Area = \qquad

Volume of a Cylinder = \qquad
Surface Area of a Cylinder = \qquad
9) Volume = \qquad
Surface Area = \qquad
10) Volume $=$ \qquad
Surface Area = \qquad

11) Volume $=$ \qquad 12) Volume $=$ \qquad
Surface Area = \qquad Surface Area = \qquad

Name \qquad ANSWER KEY Period \qquad Date \qquad

Volume and Surface Area of Rectangular Prisms and Cylinders

Remember, the volume of a shape is how many cubic units you can fit inside it. What are the areas of the cubes drawn below? Make sure you write the units.

Volume of a Rectangular Prism $=\ldots$ length x width x height
Surface Area of a Rectangular Prism $=\underline{2(l e n g t h ~} \mathrm{x}$ width + length x height + width x height)

1) Volume $=_8$ cubic ft. Surface Area = $\quad 24$ sq. ft

2) Volume $=_1,260$ cubic in. Surface Area = 864 sq. in.

3) Volume $=\underline{27}$ cubic cm . Surface Area $=_54$ sq. $\mathbf{c m}$.

4) Volume $=63$ cubic ft. Surface Area $=_\mathbf{1 0 2 ~ s q} . \mathrm{ft}$.

Volume of a Cylinder $=\ldots \underline{3.14 \times}$ radius x radisus x height
Surface Area of a Cylinder $=2 \times 3.14 \times$ radius \times height $+2 \times 3.14 \times$ radius \times radius
9) Volume $=\mathbf{5 4 9 . 5}$ cubic in. Surface Area = 376.8 sq. in.

Surface Area $=_\mathbf{2 5 . 1 2 ~ s q . ~ f t . ~}$

10) Volume $=169.56$ cubic cm.

Surface Area $=\ldots \mathbf{1 6 9 . 5 6 ~ s q} . \mathrm{cm}$.

12) Volume $=\mathbf{5 , 0 8 6 . 8}$ cubic mm. Surface Area $=_\mathbf{1 , 6 3 9 . 0 8 ~ s q} \cdot \mathrm{mm}$.

